

FULLY FUNDED PHD POSITION IN ORGANIC PHOTOVOLTAICS AND MICROGRID DESIGN

ELECTRIFIED TRANSPORTATION AND MICROGRID DESIGN FOR NORTHERN AND REMOTE COMMUNITIES

Supervisor: [Dr. Muthukumaran Packirisamy](#)

Laboratory: [Optical-Bio Microsystems Lab](#)

Department: Mechanical, Industrial and Aerospace Engineering

University: Concordia University, Montreal, Canada

Start Date: May 2026, September 2026

PhD Fellowship: 35K CAD per year for 4 years

PROJECT OVERVIEW

This PhD project is part of a broader initiative to design clean, reliable, and resilient energy systems for remote and off-grid environments. It explores the integration of electric vehicles, renewable generation, and novel solar technologies into cold-climate infrastructure, aiming to reduce emissions and dependency on fossil fuels.

Dr. Packirisamy is a Concordia University Research Chair, member of the National Academy of Inventors, and Director of the Optical-Bio Microsystems Laboratory, equipped with state-of-the-art microfabrication and testing facilities. He will lead the work on novel organic solar cells for power generation for EVs and northern climate buildings.

ROLE DESCRIPTION

- Design, fabricate, and optimize novel organic solar cells and modules for high efficiency and durability in cold and low-light environments.
- Characterize electrical, optical, and thermal performance of organic photovoltaic devices under northern climate conditions.
- Develop vehicle-integrated organic solar panels, including flexible, lightweight, and customizable form factors for EV surfaces.
- Investigate organic solar cells for building-integrated applications, including roofs, façades, garages, and semi-transparent PV windows.
- Study integration of organic PV with EV batteries and power electronics for energy harvesting, storage, and auxiliary power.
- Evaluate long-term stability and degradation mechanisms of organic solar cells exposed to extreme temperature cycles.
- Collaborate with industry and community partners to translate lab-scale organic PV innovations into applied energy systems.
- Disseminate results through high-impact publications, patents, and conferences in photovoltaics and sustainable energy.

REQUIREMENTS

- Master's degree (or equivalent) in Mechanical Engineering, Electrical Engineering, Materials Science, Energy Engineering, or a closely related field.
- Strong background in photovoltaics, solar energy systems, organic electronics, or semiconductor materials.
- Experience with fabrication and characterization of solar cells or thin-film devices (organic PV experience is a strong asset).
- Knowledge of PV performance metrics, degradation mechanisms, and environmental testing.
- Familiarity with EV energy systems, battery storage, power electronics, or vehicle-integrated energy solutions (asset).
- Interest in northern, cold-climate, or remote-community energy challenges, including resilience and infrastructure electrification.
- Ability to work with experimental setups, data acquisition, and performance modeling.
- Programming or data analysis experience (e.g., MATLAB, Python) for energy system evaluation.
- Strong written and oral communication skills, with the ability to work in interdisciplinary and applied research teams.

FULLY FUNDED PHD POSITION IN ORGANIC PHOTOVOLTAICS AND MICROGRID DESIGN

ELECTRIFIED TRANSPORTATION AND MICROGRID DESIGN FOR NORTHERN AND REMOTE COMMUNITIES

WHAT WE OFFER

- Fully funded PhD position, including a competitive stipend and support for research-related expenses.
- Supervision and mentorship from Professor Packirisamy, an internationally recognized leader in organic solar cells, Honorary Concordia University Research Chair, and member of the National Academy of Inventors.
- Access to state-of-the-art laboratories and fabrication facilities for organic photovoltaics, materials characterization, and energy systems research.
- Opportunities to work on cutting-edge applications of organic solar cells for electric vehicles and northern-climate buildings with real-world deployment potential.
- Collaboration with industry partners, Indigenous communities, and interdisciplinary research teams through Living Lab and electrification initiatives.
- Strong support for publications, patents, conference participation, and professional development, including training workshops and networking opportunities.
- A supportive, inclusive, and collaborative research environment within Concordia University's Mechanical, Industrial and Aerospace Engineering Department.

HOW TO APPLY

Please send the following documents in a single PDF file to volt-age.recruitment@concordia.ca:

- Cover letter explaining why you are a good fit for the position
- Academic CV
- Transcripts
- Names and contact information of 2 referees
- One writing sample, e.g., published journal/conference paper
- Any other documents that might benefit your file

Subject of the email: **Electrified transportation_Your name**

Deadline: Applications will be reviewed on a rolling basis.

For all questions, please contact Alisa Makusheva at alisa.makusheva@concordia.ca